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Fig.1 Illustration of the PNG process



I. Polynuclear Growth (PNG)

The Model: Sizeless islands nucleate uniformly in space and
time with rate . Islands grow laterally in the radial direction
with constant velocity v. Coalescence of islands results in a
larger island. The joint perimeter keeps growing in the original

radial direction. Set v = v = 1, without loss of generality.
Applications (2D): Polymer lammellar crystallization

Equivalent to (1D): Kink-Antikink gas in overdamped sine-
gordon equation. Kinks (Antikinks) correspond to up (down)
step edges, i.e., h(x,t) — dh(x,t)/dx. Island growth equivalent
to ballistic kink motion. Island coalescence corresponds to Kink-

Antikink annihilation.

Equilibrium properties are known (1D):
— Fluctuations in surface hight scale with system size as ~ L'/

— Surface growth velocity: veq = V2

nonequilibrium (infinite system) properties unknown




The uncovered fraction

S;(t) = the exposed fraction of the jth layer at time ¢. Many

properties follow directly:

The surface hight, h(t) ~ vt

h(t) = () = 3 3 [Spnlt) = S(0)].

J

The surface width, w(t) ~ ¢’

w?(0) = (%) = ()’ = X 7 [Salt) = S,(0)] = W0

]:

Wave-like asymptotic form

Si(t) = F (j ;ﬁvt)

Extremal properties
1 —exp(—27*) z — o0;
F(z) ~
exp(—|z]|7) z — —00.

Large coverage follows a Fisher tail, o, = #



The gap density
[j(z,t) = the density of inter-island gaps (voids) of length  on
the jth layer. Gives

The uncovered fraction
S;i(t) = /OOO drx fi(z,1)
The island density

Ny(t) = [ du fif 1)

Master equation

afj(l’, t) _ 2(9]0](11}, t)

ot S - afie ) +2 [T dyfiy,t)]

first term - gap shrinkage due to surface growth
next two terms - changes due to nucleation.
7v;(t) = nucleation rate at the jth layer

implies correct rate equation, S;(t) = —2N;(t)
Island density rate equation

N;(t) = =2f;(0,t) + 7;(t)5;(2)



II. Mean-Field Theory (MFT)

Compare with exact island density rate equation

Nj(t) = =2f;(0,t) + S;(t) — Sj-1(t)

To comply with this equation, the nucleation rate must be

Si

() = 1 — 212

Formal solution for gap density, g;(¢t) = J¢ dr (1)

fi(w,1) = g3(t) exp | g, () — 2 [} drg;(7)|

Uncovered fraction obeys second order nonlinear ODE

d2 Sj_l

self consistent nucleation rate




Traveling wave solution
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Fig.2 The uncovered fraction S;(t) vs. time for layers j = 20, 40, 60, and 80.

The coverage follows a traveling wave solution, S;(t) = F(j —

vt). For j > vt, 1 — F(z) ~ exp(—ax) with
e —1

o2

v’ =2

As a > 0 all velocities in the range vy, 00) are possible. How-
ever, the minimal possible velocity is selected and v = v, =

1.75735. This agrees to 0.1% with the numerics!

minimal stable velocity is selected




Extremal Properties of Coverage

1 —exp(—az) 2z — o0;

F(z)w{

exp(—2z?) z — —00.

Generalization to higher dimensions

Higher order rate equation

dd+1 Sj—l

hlS'—d!Qd( —) deﬂd/Q/F(l—Fd/Q)
dtd+1 J S;
Again, a traveling wave form for S;(¢). All qualitative properties

are similar to 1D including asymptotically flat surface, 3 = 0

Minimal velocity selected

et — 1

d+1 _ 7
v = de &d—i-l

asymptotically smooth surface predicted




ITI. Linear Recursion Relation (LRR) approach

Uses known Kolmogorov coverage in first layer, S;(t) [2]

t dS;(T)
Sj+(t) = 5;(t) —/0 dr Si(t — 1) ch
Reduces to diffusion equation
oS 0%S
ot g2 -7
Growth velocity
1
Qg \#1  (d+2
o (d + 1) / (d + 1)
Symmetric wave form, Erfc(z) = Lﬂ 1% du ot
1 ] - Udt
S;(t) = éErfc(—x) ==

diffusive growth of width G =1/2




IV. Monte Carlo simulations
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Fig.3 Uncovered fraction S;(t) versus ¢ for j =1,2,3,4
MFT gives an improved approximation

MFT and LRR provide lower and upper bounds
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Fig.4 Long time behavior of the width. Early behavior is linear and late behavior is ¢1/3.

1D PNG is in KPZ universality class [5]



Summary

MFT PNG LRR

w1 |1.75735|1.41 = 0.01/1.12838
310 1/3 1/2
o 1 3/2 2

o_| 2 > 2 2

Table 1: Characteristics of the three approaches for the omne-dimensional PNG model.

Conclusions
e MFT provides better approximation for coverage
e MFT improves for higher dimensions
e MFT and LRR provide upper and lower bounds
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